An improved transfer-matrix model for optical superlenses.
نویسندگان
چکیده
The use of transfer-matrix analyses for characterizing planar optical superlensing systems is studied here, and the simple model of the planar superlens as an isolated imaging element is shown to be defective in certain situations. These defects arise due to neglected interactions between the superlens and the spatially varying shadow masks that are normally used as scattering objects for imaging, and which are held in near-field proximity to the superlenses. An extended model is proposed that improves the accuracy of the transfer-matrix analysis, without adding significant complexity, by approximating the reflections from the shadow mask by those from a uniform metal layer. Results obtained using both forms of the transfer matrix model are compared to finite element models and two example superlenses, one with a silver monolayer and the other with three silver sublayers, are characterized. The modified transfer matrix model gives much better agreement in both cases.
منابع مشابه
Image quality deterioration due to phase fluctuation in layered superlens
Optical transfer function (OTF) and image spectrums of the layered metal (M)–dielectric (D) superlenses (MD)n (where n is the number of cycles) are analyzed via transfer matrix method and effective-medium model. It is shown that the magnitude of OTF (MTF) with a high cutoff wave vector does not guarantee high resolution; the fluctuation of phase of OTF (PTF) is also a prime factor causing super...
متن کاملSpectrally and Spatially Configurable Superlenses for Optoplasmonic Nanocircuits
Energy transfer between photons and molecules and between neighboring molecules is ubiquitous in living nature, most prominently in photosynthesis. While energy transfer is efficiently utilized by living systems, its adoption to connect individual components in man-made plasmonic nanocircuits has been challenged by low transfer efficiencies that motivate the development of entirely new concepts...
متن کاملSuperlenses to overcome the diffraction limit.
The imaging resolution of conventional lenses is limited by diffraction. Artificially engineered metamaterials now offer the possibility of building a superlens that overcomes this limit. We review the physics of such superlenses and the theoretical and experimental progress in this rapidly developing field. Superlenses have great potential in applications such as biomedical imaging, optical li...
متن کاملQuantum modeling of light absorption in graphene based photo-transistors
Graphene based optical devices are highly recommended and interested for integrated optical circuits. As a main component of an optical link, a photodetector based on graphene nano-ribbons is proposed and studied. A quantum transport model is presented for simulation of a graphene nano-ribbon (GNR) -based photo-transistor based on non-equilibrium Green’s function method. In the proposed model a...
متن کاملMultilayered Superlenses Containing CsBr or Active Medium for Subwavelength Photolithography
The characteristics of periodic multilayered near-field superlenses are analyzed and optimized, using the dispersion relation derived from an effective medium theory and the transfer function in the spectral domain. The k′ z-kx and k′′ z -kx contours are used to explain and predict the spectral width, amplitude and phase of the transfer function. Superlenses containing CsBr or active layers are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 17 16 شماره
صفحات -
تاریخ انتشار 2009